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SUMMARY
Single-cell biology is facing a crisis of sorts. Vast numbers of single-cell molecular profiles are being gener-
ated, clustered and annotated. However, this is overwhelmingly ad hoc, and we continue to lack a principled,
unified, andwell-moored system for defining, naming, and organizing cell types. In this perspective, we argue
against an atlas or periodic table-like discretization as the right metaphor for a reference taxonomy of cell
types. In its place, we advocate for a data-driven, tree-based nomenclature that is rooted in a ‘‘consensus
ontogeny’’ spanning the life cycle of a given species. We explore how such a reference cell tree, inclusive
of both lineage histories and molecular states, could be constructed, represented, and segmented in prac-
tice. Analogous to the taxonomic classification of species, a consensus ontogeny would provide a universal,
stable, and extendable framework for precise scientific communication, both contemporaneously and
across the ages.
CLASSIFICATION IN BIOLOGY

In the preface to The Order of Things,1 the French philosopher

Michel Foucault illustrates the limitations of taxonomic classifi-

cations by quoting a fictional ‘‘certain Chinese encyclopedia’’

that states ‘‘animals are divided into: (a) belonging to the Em-

peror, (b) embalmed, (c) tame, (d) sucking pigs, (e) sirens,

(f) fabulous, (g) stray dogs, (h) included in the present classifica-

tion, (i) frenzied, (j) innumerable, (k) drawn with a very fine camel

hair brush, (l) et cetera, (m) having just broken the water pitcher,

(n) that from a long way off look like flies.’’ Foucault’s point in cit-

ing this absurd taxonomy is that we often assume that an

accepted classification scheme represents an objective reality,

but there are infinite alternatives. This matters, he argues,

because our systems of classification both reflect and direct

our thinking: howwe apply labels, and howwe relate those labels

to one another, shapes our conception of the underlying phe-

nomena.

To the extent that biology engages in ‘‘summarizing’’ the nat-

ural world, we should give careful consideration to howwe frame

the task, out of the infinite ways it might be done. Species taxon-

omy provides an excellent example. The Aristotelian system,

which persisted for two millenia, classified animals into a dozen

groups spanning a scale of relative ‘‘perfection’’. By the early

18th century, this was complemented by a polynomial, largely

descriptive, and highly fluid nomenclature.2 For example, the Eu-

ropean honey bee might be known as ‘‘Apis pubescens, thorace

subgriseo, abdomine fusco, pedibus posticis glabris utrinque

margine ciliatis,’’ which translates as ‘‘furry bee, grayish thorax,
brownish abdomen, black legs smooth with hair on both sides’’.3

These unwieldy descriptors, lacking a shared organizational

framework or information on how classes relate to one another,

bring to mind the contemporary practice of naming cell types by

combinations of differentially expressed marker genes.

In the late 18th century, species classification was revolution-

ized by Linnaeus, who began organizing species based on a

binomial nomenclature (‘‘genus’’ + ‘‘species’’, e.g., Homo sapi-

ens). One of the first scientists to use paper-based index cards,

Linnaeus was able to efficiently incorporate new species, as well

as new information about already-named species, into a stable

framework.4 Although there are recent advocates for starting

anew with a nomenclature grounded solely in molecular phylo-

genetics, Linnaeus’ system is proving stubborn to displace.

This is in part because it already meets key criteria, such as

enabling precise communication (contemporaneously, as well

as with past and future researchers) and the integration of new

information into a stable, widely accepted backbone.

The invention of themicroscope in the 17th century opened up

an entirely new dimension in biology through the recognition that

cells are the basic structural and functional unit of all living things,

and moreover that all cells arise from other cells.5 Cells were

initially classified by physical appearance.6 As microscopy

improved and new kinds of measurement (immunohistochem-

ical, electrophysiological) and understanding (functional, devel-

opmental, evolutionary) emerged, cell type nomenclature

became increasingly muddled, and ultimately subfield-specific.

Within the past decade, new technologies have enabled the

routine profiling of the mRNA contents of single cells. As the
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Box 1. Terminology

Cell type: A recurring pattern of developmental origin and

potential within and across cell lineage trees of individuals

of a given species, generally reflected in shared molecular

properties.

Cell state: Variations in molecular phenotypes within a cell

type that do not impact its developmental potential (e.g., cell

cycle, stochastic fluctuations).

Cell identity: An individual cell as characterized solely by its

molecular phenotypes at a given moment in time.

Cell lineage: The relationships among cells of an individual

organism as defined solely by the series of cell divisions that

begins with a single zygote.

Cell trajectory: Ordering of cells’ developmental relation-

ships inferred solely from similarity in molecular phenotypes,

which might or might not recapitulate developmental cell line-

age relationships.
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practitioners of such methods have expanded from a handful to

thousands of labs, the repertoire of associated computational

tools has also grown. However, although there are excellent

algorithms for organizing single-cell profiles into manageable

numbers of ‘‘clusters’’, researchers are largely left to their own

devices with respect to naming clusters and relating them to

other datasets.

This is unfortunate for several reasons. First, it leads to consid-

erable repetition of effort, often in the form of time-intensive liter-

ature andweb searches (e.g., the unsystematic practice of ‘‘goo-

gling’’ differentially expressed genes). Second, it is the wild west

out there, with no widely accepted standards around annotation

quality or nomenclature. Although we are increasingly adept at

integrating datasets and transferring labels computationally,

this risks simply propagating potentially suboptimal descriptors.

Third, the resulting corpus is heavily biased toward the systems

in which the data is being generated (a complex function of sci-

entific interest, resource allocation, and technical factors), rather

than being anchored in a natural distribution. Fourth, it repre-

sents a missed opportunity, as it doesn’t feel like we are moving

toward any consensus or cohesion that mirrors Linnaeus’s index

cards, where new information can simply be added to a stable

backbone.

As more data is generated, the situation is becoming progres-

sively worse. Not only do we lack a unified system of cell type

classification,7 we also lack consensus onwhich is themost use-

ful unit for classification or what the terms that we routinely use

actually mean. For example, cell ‘‘type’’, ‘‘state’’, and ‘‘identity’’

are often used interchangeably, as are cell ‘‘lineage’’ and ‘‘trajec-

tory’’.8 Howwe define these terms in the context of this perspec-

tive is summarized in Box 1.

In our opinion, we should be pushing for a cell type nomencla-

ture that meets some of the same key criteria as Linnaean taxon-

omy, as well as additional ones, including: (1) accommodating all

cells arising during the life cycle of a given organism; (2) accom-

modating inter-individual variation, both normal and disease-

related; (3) relating cell types to one another in a biologically

meaningful way; (4) being stable to the incorporation of new

data or new data types; and (5) being constructed in a largely,
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if not entirely, data-driven manner. As we will be studying cells

for a long time, a nomenclature that meets these criteria is

necessary for precise scientific communication in the present

and across the ages. How can we ensure that the cell type labels

we use in papers today can be accurately interpreted by re-

searchers working 20 or 200 years from now?

What is the right organizing principle?
What are the options for an ‘‘organizing principle’’ around which

we might base a universal, stable, and useful nomenclature? To

date, cell type names have primarily derived from historical,

morphological, functional, molecular, evolutionary, and/or

developmental distinctions. However, they are not consistently

based on any one of these. Rather, each name seems to be a

result of historical contingency. For example, the retina includes

cell types named by shape/position (horizontal cells), function

(photoreceptors) and scientist (Müller glia).

This mixing of organizing principles is also an explicit choice of

the most serious effort to date to create a universal nomencla-

ture. Cell Ontology is a curated resource, analogous to Gene

Ontology, with over 2,000 cell type classes. No single organizing

principle is prioritized, but rather the classes correspond to

different cellular properties (e.g., functional, histological) or

broad ‘‘lineage’’ classes (e.g., ‘‘blood cells’’).9 In our view, we

should be more consistent, choosing a ‘‘primary’’ principle,

even if others are given secondary consideration. Given the

known discrepancies between different organizing principles

(e.g., two cells may have similar molecular profiles or functions

but be developmentally unrelated), this is necessary to end up

at an unambiguous, universal framework.

What is the ‘‘right’’ choice for this principle? Let us consider

themore obvious options in turn: historical, morphological, func-

tional, evolutionary, molecular, and developmental (Figure 1).We

immediately reject historical footnotes, as there is no practical

utility to naming cell types after specific researchers. We also

reject morphology—although all cells could be systematically

grouped by morphology, the resulting classification would be

decidedly less meaningful than alternatives.

A system in which shared physiological function is the primary

characteristic merits consideration,10 and is arguably the domi-

nant principle in the nomenclature we have inherited. Even cells

with non-functional names are often still primarily defined by

their function (e.g., B cells). Such functional definitions boil

down all aspects of cellular biology into a brief raison d’être.

However, our knowledge and assignment of cells’ primary func-

tion is inherently subjective and decidedly incomplete. Although

some gaps could be filled through systematic approaches (e.g.,

inferences based on gene expression modules), this risks simply

propagating biases of current knowledge.

One can also take an evolutionary perspective, defining cell

types as ‘‘a set of cells in an organism that change in evolution

together, partially independent of other cells, and are evolution-

arily more closely related to each other than to other cells’’.11

This definition relies on the concept of an evolutionarily stable

‘‘core regulatory complex’’ (CoRC), composed of key transcrip-

tion factors (TFs), miRNAs, RNA binding proteins, etc. Although

undoubtedly useful for certain goals, we argue against an evolu-

tionary perspective for our purposes. First, identifying



Figure 1. Potential organizing principles for cell type taxonomy
An ideal principle would: arrange cells in a biologically meaningful way; be stable to the incorporation of new data; accommodate all cells arising during the
organism’s natural life cycle; and be fully data-driven.
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orthologous cell types across vast evolutionary distances is

considerably more challenging for cell types than for gene se-

quences. Second, the CoRC definition focuses on terminally

differentiated cell types, deemphasizing the way(s) that each

cell type came to be within a developing organism. Third, the

use of CoRCs as the distinguishing feature of each cell type is

diffuse, as it is subjective which factors would be included or

what level of difference would delineate CoRCs from one

another. Fourth, the overwhelming majority of biomedical

research is focused on humans and a fewmodel organisms. Giv-

ing primacy to evolution comes at the expense of precision in

defining relationships among cell types within this handful of

intensely studied species.

How about molecular profiling? The paradigmatic example is

the ‘‘cluster of differentiation’’ (CD) system for classifying im-

mune cells based on cell-surface markers. Single-cell transcrip-

tomics (scRNA-seq) has recently emerged as means of scalably

sampling all mRNAs from single cells or nuclei. Although the re-

sulting profiles are sparse, they can nonetheless be clustered

into groups corresponding to the expected ‘‘cell types’’ of the tis-

sue-of-origin. As scRNA-seq has grown in use, the field increas-

ingly relies on this approach to organize cells into ‘‘periodic

tables’’ or hierarchically clustered dendrograms.12,13 Although

laborious googling of marker genes is gradually being displaced

by automated annotation via label transfer,14 these methods

tend to rely on predefinedmarker genes or labeled reference da-

tasets as input, which themselves do not follow any systematic

nomenclature.

On one hand, molecular profiling meets some of our key

criteria. It is systematic, comprehensive, and data-driven. The
very fact that cells often cluster into discrete groups rather

than a messy continuum supports the concept of discretized

cell types. These cell types can be conceptualized as basins of

attraction in a Waddington landscape, with the measured tran-

scriptome reflecting but one aspect of cell identity underlying a

cell’s stability within a given basin.15

On the other hand, there are limitations to this framing. A first

concern is it is not necessarily stable to the incorporation of new

data, be it from cancerous tissue, or a different developmental

stage, or even from the same sample, as clustering is sensitive

to the technology used, batch effects, depth of profiling, etc.

Different groupings may result based on what is being measured

(e.g., chromatin vs. RNA vs. protein). It also forces us to choose a

resolution at which to define cell types, as one can cluster and

sub-cluster ad infinitum. Although the decision of when to stop

can be reached in a principled way, even this seems to risk draw-

ing less on any underlying biological reality than on the human

impetus to organize any observed heterogeneity into a set of

discrete, namable things. Of note, these challenges have been

addressed in part by new methods to build harmonized cell

type hierarchies out of different atlases and update existing ref-

erences as cell type resolution increases due to increased

sampling.16

A second concern is that the discretization of cell types fails to

incorporate continuous forms of molecular heterogeneity, e.g.,

spatial or temporal gradients in gene expression. This issue—

of being unable to see a clear boundary between cell types

and needing to rely on experts who might disagree on where

to put the threshold—is an acknowledged challenge for auto-

mated label transfer.16
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A third concern has less to do with how cell types are defined

and named than how they are related to one another. Although a

periodic table does relate cell types to one another through rows

and columns, and dendrograms capture cell type similarities

along one biological dimension, this is reminiscent of the pre-

Linnaean species nomenclature based on arbitrary external sim-

ilarities. Though the descriptive properties that form the basis for

the classification might be technically accurate, they are not

inherently rooted in any specific axis of biology that we care

about, whether functional, evolutionary, or developmental.

Finally, we come to developmental relationships. Lineage rep-

resents the ground truth of a cell’s history and future—where it

comes fromandwhat it will give rise to: clear, quantifiable relation-

ships between cells as they arose within the context of one indi-

vidual. The paradigmatic example is Caenorhabditis elegans,

where an invariant lineage, painstakingly documented by visual

observation, allows for each and every cell in this organism’s life

history to be precisely named.17 For example, ‘‘MS paapaaa’’,

also known as M1, is a pharyngeal motor neuron, whose descent

from the MS founder cell is reflected by the letters corresponding

to the (a)nterior or (p)osterior daughter of successive cell divisions.

Such centering on development reminds us that the discrete clus-

tering of cell types is an illusion, borne of the fact that scRNA-seq

provides a snapshot rather than a movie, i.e., the data samples a

specific moment in an organism’s life cycle and is blind to time.

However, C. elegans has a number of features that make it

uniquely well-suited to a lineage-based nomenclature, including:

(1) the invariant nature of its wild-type development; (2) adult

C. elegans consists of only �103 cells; (3) the lineage is known

due to the confluence of its invariance, the organism’s transpar-

ency, and the sheer persistence of Sulston. In a few instances,

C. elegans also illustrates how purely lineage-based descriptors

might obscure the functional homologies among cells with dispa-

rate lineage histories. For example, IL1 and IL2 neurons derive

from different founder cells, yet are practically indistinguishable

transcriptionally; the same is true of subsets of muscle cells.17,18

For more complex, non-transparent organisms, it is implau-

sible that visual observation will yield a complete cell lineage

tree. As an alternative, we and others have developed methods

that explicitly record cell lineage via clonal tagging19 or evolving

barcodes.20 However, even if these methods worked as well as

we can possibly imagine, the best outcomewould be a complete

cell lineage tree of an individual in which only the terminal nodes

are annotated by cell identity. As we would remain blind to the

identities of inferred ancestors (not to mention ‘‘extinct’’ line-

ages, e.g., due to apoptosis), it is unclear how such a tree alone

would yield a satisfactory cell type nomenclature. Finally, naming

cells by each cell division is not necessarily useful for organisms

consisting of trillions of cells, especially if those divisions do not

even play out in an invariant manner.

Toward a molecularly annotated consensus ontogeny
In summary, none of these potential organizing principles are

satisfactory, at least not in isolation. However, the last two (mo-

lecular, developmental) have appealing features. Might they be

combined?

Two maturing technical paradigms are relevant here. The first

involves ‘‘whole organism’’ scRNA-seq profiling of multiple
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developmental stages of model organisms, coupled to compu-

tational inference of transcriptional trajectories.21 Such studies

can yield ‘‘pseudo-trees’’ encompassing the development of

large, opaque model organisms, including fly, frog, zebrafish,

and mouse.22,23,24,25 Although these pseudo-trees will undoubt-

edly continue to improve in resolution and completeness, they

remain inherently inferential in terms of the cell identities linked

between successive time points, which has clear limitations.

For example, asymmetric cell divisions are obscured when

stitching datasets derived from multiple individuals, rather than

following one individual’s development over time.

The second involves molecular recorders that go beyond line-

age to record phenomena such as transcriptional activity, cell

state, signaling activity, cell-cell communication, etc.26,27 Such

methods enable reconstructing cell lineage histories in a way

that recovers the identities not only of terminal nodes but also

of inferred ancestors.

We envision that these technologies can be combined. Ima-

gine that a series of progressively older embryos is subjected

to a flavor of molecular recording that yields a comprehensive

lineage tree, with rich molecular states for terminal nodes (e.g.,

scRNA-seq) but also information about the molecular identities

of inferred ancestors. Such trees could be merged across indi-

viduals to yield a molecularly annotated consensus ontogeny

of a given species (Figure 2). The output of such an integration

exercise might resemble what was beautifully achieved by

Packer et al. for C. elegans by merging transcriptional pseudo-

trees with the Sulston lineage.18

Assuming it can be constructed, a molecularly annotated

consensus ontogeny would provide an excellent framework for

cell type classification. First, it could be generated in an entirely

data-driven, fully describable way. Second, both variation within

(e.g., due to stochastic factors, genetic variation) or deviation

from (due to disease) the consensus could be represented by

‘‘summary statistics’’ of individual branches or by alternative

branches, respectively. Third, in contrast to current atlases which

are biased toward specific systems by an amalgam of factors, a

consensus ontogeny spanning the life cycle would include all

‘‘normal’’ cell states and relate them to one another. Finally, as

this consensus ontogeny is rooted in a naturally bounded,

comprehensive, reproducible process, it would represent a stable

backbone onto which additional information could be layered.

How would a consensus ontogeny be structured and repre-

sented? We recognize that the practical aspects of the proposed

concept are likely still vague to most readers. Below we concep-

tualize a potential structure for a consensus ontogeny, address

the integration of individuals and data types, and suggest a

data-driven cell type nomenclature. We then provide a practical

example of how we envision experimentally deriving and visually

representing such a tree. Finally, we address outstanding chal-

lenges for the proposed framework, in particular for H. sapiens,

and possible solutions.

How might a consensus ontogeny of cell types be
structured and represented?
In considering how dense lineage trees might be summarized,

we find inspiration in how human demographic histories are

modeled by population geneticists (Figure 3), with subsets of



Figure 2. Conceptualizing the construction of a ‘‘consensus ontogeny’’
Left: The envisioned consensus ontogeny will require: (1) time-resolved lineage tracing, e.g., by writing DNA barcodes that uniquelymark daughter cells, ideally at
every cell division, starting at the single-cell zygote stage; (2) co-assays of cell lineage and molecular state at multiple developmental time points; (3) methods to
bridge gaps in molecular states between time points, such as in vivo sci-fate28,29 or recording of prior cell states,26, 27 (4) integration of trees derived from many
individuals.
Right: Conceptualization of a ‘‘consensus ontogeny’’ of cell types. In addition to summarizing the entirety of organismal development, such a tree could
incorporate any number of molecular state measurements, enabling the representation of phenotypic differences, including both intra-individual and inter-in-
dividual variation.
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reproductively isolated individuals conceptualized as branch

segments of a tree. The parameters defining each branch

segment might include the number of founder individuals, their

age structure, birth/death rates, etc., while the overall model

summarizes how each segment relates to other segments.

Building on concepts from Stadler and colleagues,30 we can

imagine summarizing complex cell lineage trees in an analogous

manner. Essentially, subsets of cells similar with respect to their

past, present, and future (i.e., with respect to both molecular

state and lineage), might be ‘‘bundled’’ into branch segments

defined by certain parameters (e.g., number of founding cells,

proliferation rate, cell division motifs, molecular state, etc.).

Within cross-sections of each branch segment, cells might be

heterogeneous with respect to cell cycle phase, stochastic dif-

ferences, etc., while along the branch segment, cells might be

heterogeneous with respect to a longitudinal component of

continuous differentiation. Aspects of such heterogeneity might

be correlated with the fate(s) of any given cell’s descendants,

analogous to incomplete lineage sorting in demographic

histories.

Naturally, there are differences between cellular ontogeny and

classic phylogenetics, but these arguably make development

easier to model than demographic history. First, there is no

recombination between individuals in the case of development.

Second, demographic history only happened once, whereas
development can be repeated and measured many times under

controlled conditions, including intermediary time points. Third,

we can experimentally perturb development to probe the pro-

cesses underlying each feature of the consensus ontogeny.

Fourth, whereas ground truth is inaccessible in phylogenetics

due to the passage of time, future scientists will have access

to the same underlying reality of development as we do; as

such, as technologies and computational methods improve, so

will the reference.

If each individual has a slightly different lineage history, howdo

we arrive at a consensus tree for each species? An objective

approach would be to define resolution in terms of aspects of

the tree that are consistent across individuals, i.e., ‘‘bundling’’

patterns that are invariant across individuals. We also imagine

that the comprehensive lineage tree of even one individual will

contain abundant ‘‘variations on a theme’’ that can be summa-

rized, e.g., the consistent aspects of how each nephron is built.

In fact, it is precisely the characteristics of such lineage trees that

are invariant (or at least statistically bounded) that should define

the right level of resolution for a ‘‘reference cell tree’’. In contrast

with one-off single-cell datasets, such a consensus representa-

tion would be a ground truth framework onto which other data-

sets could be projected, analogous to projection of local chro-

matin states onto the reference genomes constructed by the

Human Genome Project.
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Figure 3. Parallels between modeling de-

mographic and cell lineage histories
Top Left: Coalescent model in a subdivided pop-
ulation, adapted from Masatoshi.31 Unlike devel-
opment, no replication of the ‘‘experiment’’ is
possible in population genetics, as there is only
one run of history available to be studied. In addi-
tion, the starting conditions of the experiment are
unknown. Therefore, we need to model the past
using a suitable stochastic model, the coales-
cent.32 Eventually, all lineages coalesce into a
single lineage, the most recent common ancestor
(MRCA).
Top Right: Schematic of an analogous model of
development. All cells and cell types can be traced
back to an MRCA, the single-cell zygote. In some
cases, molecularly similar cell types originate from
well-separated lineages.
Bottom Left: In incomplete lineage sorting, an
ancestral gene copy fails to coalesce (looking
backwards in time) into a common ancestral copy
until deeper than previous speciation events, i.e.,
the tree produced by a single gene is discordant
from the species-level tree.
Bottom Right: The probability that a cell’s
descendant will follow a certain lineage trajectory
can differ before a cell type split occurs, e.g.,
through fluctuations in TF levels. Crossed circles
are ‘‘extinct’’ lineages.
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Distinctions from a Waddington landscape and
traditional cell lineage trees
A key difference between a reference cell tree and a ‘‘reference

cell atlas’’ is that the tree would be continuous, i.e., all segments

would be connected to other segments, flowing back to a com-

mon root, the single-cell zygote. But it would also differ from the

continuous Waddington landscape, the dominant paradigm for

representing the molecular basis of cellular differentiation for de-

cades.33 The Waddington landscape conceptualizes cell types

as attractor states and illustrates the probability of develop-

mental trajectories, as well as cell type stability and transition

likelihoods, which are inherently challenging to measure in prac-

tice. In contrast, a consensus ontogeny of cell types would more

explicitly summarize themolecular and lineage paths in this land-

scape as they are actually traversed in wild-type development.

To be clear, we do not envision the consensus ontogeny as a

literal depiction of binary splits representing every cell division

like the Sulston tree. A purely bifurcating lineage tree would fail

to incorporate concepts such as state divergence and conver-

gence.34 In contrast, as articulated by Wagner and Klein, state

manifolds (i.e., a continuum of cell states) do include these con-

cepts and are arguably more useful than a purely bifurcating line-

age tree. A consensus ontogeny, grounded in lineage tracing in-
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formation and roughly resembling the

shape of a tree, would be inclusive of

both representations. It would: (1) be

able to represent a variety of recurrent

motifs including but not limited to binary

splits, such as asymmetric cell divi-

sions,35 transcriptional state conver-

gence, recurrent ‘‘subprograms’’, etc.;

(2) not seek to represent every cell divi-
sion of an individual’s development, but rather bundle the key

patterns, both within and across individuals, into summary rep-

resentations, which take the form of branch segments; and (3)

leave room for ‘‘demographic’’ aspects of development, such

as how many cells are the ‘‘founders’’ of each branch, clonal

dominance, etc.

Layering on additional molecular phenotypes
By practical necessity, the envisioned consensus ontogeny

would require at least some systematically acquired representa-

tion of the molecular phenotypes of cells at any position

throughout the tree, to facilitate integration across individuals,

the bundling of recurrent patterns into cell types, relating these

to existing cell type nomenclature, etc. However, it would also

represent a backbone onto which more molecular measure-

ments could be added. Which molecular phenotypes would

best enhance the tree? Currently we can measure mRNA, chro-

matin accessibility, protein, and epigenetic marks, as well as

spatial location, at single-cell resolution. The dynamic range for

these phenotypes differs within and across cells, as does the

ease of measurement and interpretation, and the perceived

role and temporal order in changing cell fates. Ultimately, we

do not need to decide at this point which molecular phenotypes
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to include. Indeed, a key benefit of such a reference, grounded in

the reproducible process of development, is that even decades

from now, measurements we haven’t conceived of yet could be

layered on to it.

Single-cell co-assays of any molecular characteristic and line-

age would be sufficient for its incorporation into a reference tree.

Co-assays already exist for mRNA and lineage and chromatin

accessibility and lineage, although not yet at the required tempo-

ral resolution or depth of coverage.36,37,38 However, given how

rapidly single-cell and genome-editing technologies are

advancing, we are optimistic that at least for model organisms,

dense lineage trees in which the transcriptome is measured in

nearly all endpoint cells are within reach. Once the consensus

ontogeny is constructed from many such trees, we may no

longer need to co-measure lineage alongside molecular pheno-

types in order to place cells with reasonable confidence to spe-

cific locations on the tree.

In addition to molecular phenotypes, our tree needs to explic-

itly accommodate further continuous forms of heterogeneity that

tend to be discarded by discretized cellular taxonomies, e.g.,

spatial gradients and biased differentiation potentials. Biased

differentiation potentials may be linked to spatial position,

possibly but not necessarily reflected in a cell’s current transcrip-

tome. C. elegans, for which we know ground truth, provides

some insight about congruence (or lack thereof) between these

features. A systematic comparison of anatomical position and

single-cell transcriptomes of the anatomically defined canonical

118 neuron classes revealed 128 distinguishable molecular

states, mostly agreeing but in some cases grouping anatomical

classes together or revealing additional subtypes.39 Other cases

of lineage-specific priming establishing L/R asymmetries in the

gene expression of related neuron pairs in C. elegans have

been described.40 It is likely that differences between related

cells in different anatomical positions will be even more pro-

nounced in more complex organisms across all their develop-

mental time points; accordingly we need to develop new ideas

to represent spatial information within a consensus ontogeny.

Fortunately, apart from cells that extensivelymigrate or circulate,

lineage history and anatomical position should be correlated

such that a nomenclature grounded in lineage should actually

aid in cataloging spatial information.

To make the tree as informative as possible, we should ulti-

mately adorn it with the key TFs, signaling pathways, etc.

responsible for nudging cells in different directions. Increasing

evidence argues for a TF ‘‘selector code’’ in cell type specifica-

tion, where cell types can be defined by unique combinations

of TFs that are continuously expressed. For example, the vast

majority of 118 C elegans neuron classes are characterized by

a distinct TF expression pattern.41 In Drosophila, manipulations

of the TF code have been shown to enable the complete

morphological and transcriptional conversion between neuronal

cell types.42 We propose TF combinations as the most useful

additional cell type descriptors rather than the currently used

‘‘most differentially expressed’’ genes or cell-surface markers.

Resolution and nomenclature
In addition to relating cell types in a reference tree to one another

in a meaningful way, we also need a system of nomenclature.
What is the right level of resolution at which to apply labels? Sin-

gle-cell measurements bring the temptation of iterative sub-clas-

sifications, driven by biological or technical variation where no

two cells are identical, to the point of becoming meaningless.

For species, resolution is defined by whether individuals are

able to interbreed to produce fertile offspring. But for conven-

tional ‘‘atlases’’ of cells, there is no equivalently crisp rule. One

can take a systematic approach (e.g., defining cell types as sub-

sets of cells that can be reliably classified viamachine learning as

belonging to that type as opposed to other types in an atlas43,44),

but these remain conflated with the quality of the data (i.e., the

number of cell types would grow with higher quality scRNA-

seq data).

We suggest a nomenclature grounded, at its highest level, in

the conventional name of cells within the branch segment (e.g.,

hepatocytes), with some arbitrary label appended if multiple

branch segments share the same name (e.g., hepatocyte-A).

More granular labels could be applied to cells based on their

sample-of-origin or progression along the branch segment. For

example, hepatocyte-A-E14-65 might be a particular kind of

hepatocyte that was derived from an E14 mouse and had pro-

gressed 65% of the way along the branch segment in which it

resides. As we learn more about the key TFs defining the pro-

gression across different branch segments, we can optionally

incorporate these into the nomenclature describing an individual

cell (e.g., hepatocyte-A-E14-65-TF.XYZ). In addition (or alterna-

tively), terms could be added that summarize where any given

cell falls with respect to the principal components of heterogene-

ity within its branch segment. In summary, the nomenclature

would attempt to convey maximal information about a cell’s

past, present, and future with a minimal number of terms.

As noted, we are not suggesting to completely replace

currently used cell type names by an entirely new naming

scheme, as this would both be impractical and hurt our ability

to relate scientific findings to the past. However, given the inex-

actness of contemporary nomenclature, we strongly argue for

these terms to be pinned to specific branch segments, such

that we end upwith a systematic nomenclature whose construc-

tion is data-driven and fully describable, and moreover inclusive

of all cell types that arise during the natural life cycle of that or-

ganism. This approach will also allow us to differentiate between

progenitor populations, establish an objective definition of what

constitutes a novel cell type, and systematically identify the mo-

lecular characteristics that aremost predictive of a cell belonging

to a particular type.

Grounding the concept in a specific example
To better ground the concept of a consensus ontogeny, let us

consider how one could derive a particular branch, the murine

hematopoiesis lineage. ACRISPR-based lineage-tracing system

can be incorporated into hematopoietic stem cells by activating

the cassette with a lineage-specific promoter in transgenic mice,

or in this specific case by ex vivo transduction and transplanta-

tion. Because these methods can now perform continuous

recording for weeks with multiple events per cell division and

capture scRNA-seq profiles from the same cells,45 it is plausible

that we will soon be able to record every cell division within a sin-

gle individual. To obtain a consensus ontogeny, this would need
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Figure 4. A schematic of a consensus

ontogeny for fetal hematopoiesis
The overall tree structure represents the shared
developmental trajectories49 of cells belonging to a
certain cell lineage (e.g., erythrocytes, platelets
etc.), but does not depict each individual cell divi-
sion as it occurs in an individual organism. The
consensus ontogeny could be visualized as a 3D
tree-shaped structure (bottom), where the co-
ordinates represent cell lineage (while allowing for
divergence and convergence events between
branches), differentiation state along a certain cell
lineage branch, and biological time. Branches
could be automatically segmented into ‘‘cell
types’’ along the differentiation axis, e.g., based on
maximum information gain, and annotated ac-
cording to key distinctive features. Although the
proposed visualization is based primarily on aver-
aged developmental lineage information, associ-
ated molecular data is used for the branch seg-
mentation and can be visualized for each single
cell for arbitrary cell types. An exemplary branch of
a mutant mouse which manifests in both delayed
and arrested platelet development is shown
(dotted line).
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to be repeated over many time points and individuals, because

measuring molecular profiles of the cells for whom we establish

lineage is only possible by terminating the experiment at a single

time point. Given the pace of technology, we do not anticipate

the required number of cells, time points, and individuals will

be limiting. To computationally construct a consensus ontogeny,

one would start from the purely lineage-derived tree for each in-

dividual using phylogenetic algorithms and then bundle these in

a way that captures the patterns that are invariant across individ-

uals. Toward a similar end, algorithms have recently been

described that reconstruct time-scaled phylogenies with esti-

mates of population sizes and commitment biases of progenitor

states from lineage barcodes.46

One possible visual representation of the consensus

ontogeny would have cell lineage (e.g., erythrocyte-A), differ-

entiation state (90% progression along branch) and time (E14)

as three axes (Figure 4). We would use the molecular informa-

tion collected alongside developmental lineage to both char-

acterize differentiation states and automatically determine

borders of branch segments along this axis, with each

such segment comprising a cell type e.g., based on objective

criteria such as maximum information gain. An algorithm

commonly used to build decision trees based on information

entropy is C4.5, which works for both non-binary choices

and continuous categories and on multi-omics data.47

Computational approaches to build decision trees for

cell type classification from a combination of lineage and
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single-cell genomics data have been

reported.48 They also allow the auto-

matic definition of the most informative

features (mostly TFs) at each decision

point, which we could use for automati-

cally naming individual branch segments

(e.g., erythroblast-A-GATA1, erythroblast-

B-NFE2). Heterogeneity within branch
segments could be summarized via principal components anal-

ysis of gene expression profiles.

The consensus ontogeny could be displayed in 3D on an inter-

active website and allow researchers to explore segments of in-

terest, whose molecular states for all contained cells could then

be visualized, e.g., as manifolds. Providing pre-computed differ-

entially expressed genes compared to other specific stages, lin-

eages, or all other lineages could be easily incorporated. Starting

from constructing sub-structures for individual organs or physi-

ological systems, we can work toward assembling a full

consensus ontogeny for an organism, similar to how the refer-

ence genome started from individual contigs. Since we are not

planning on representing the explicit cell divisions of any given

individual, we can combine branches derived in different exper-

iments/individuals as long as there is overlap.Mutants or disease

states could be readily incorporated into this framework if it is

possible to apply lineage-tracing approaches. They might

diverge from the wild-type tree in any of the three major axes,

such as aberrations in time spent to reach a certain state, the

actual differentiation state reached, or even giving rise to entirely

new lineages. In particular for mutants (e.g., KO mice), we fore-

see ‘‘tree thinking’’30 as being highly useful for studying the ori-

gins of the underlying defect(s). When it is not possible to apply

lineage-tracing approaches to pathological states, cell states

with only molecular information could still be mapped onto

the lineage tree by using inferred trajectories. Similarly, we

could devise strategies to compare individual branches,
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sub-structures, or entire trees across organisms, incorporating

the learned lineage information, but largely building on computa-

tional approaches that are currently being developed for molec-

ular states.24,50,51,52,53
What about H. sapiens?
A primary weakness of this proposal is our inability to apply

genome-editing-based lineage-tracing methods to derive a

reference ontogeny for humans. There are at least four avenues

to ameliorate this: (1) Generation of consensus ontogenies of

closely related organisms (e.g., rhesus macaque); (2) in vitro hu-

man ‘‘stembryo’’ models54; (3) lineage tracing based on somatic

mutations in chromosomal or mitochondrial DNA55,56; and (4)

lineage inference based on molecular profiles from human tis-

sues. It is likely that a combination of these approaches will be

required to arrive at an approximate human representation.

Furthermore, the overwhelming majority of human biology is

shared by closely related models. We predict that there will be

few instances in which a mouse or macaque ontogeny/nomen-

clature is insufficient for human data, just as there are hardly

any human-specific genes.
OPPORTUNITIES

Approaches of information containment and organization do not

merely provide platforms for more efficient data accumulation,

but ideally also serve to distill new structural relations and pat-

terns. Besides organizing the vast amount of existing cellular

data, unified species-specific cell type trees have the potential

to bring to light some key tenets of developmental biology.

In its simplest form, a consensus ontogeny, to which any sin-

gle-cell dataset could be mapped, would enable biologists to be

more precise about which cell populations they are referring to.

This would both allow us to synthesize the vast amount of

research that is done in different subfields all over the world,

as well as to communicate effectively with future scientists.

However, beyond the obvious advantage of a common, stable

nomenclature, a reference tree would provide biological insights

on its own. First, it would lay the foundation for the nomination

and validation of factors that shape specific cell type transitions.

Such insights could facilitate and expedite the efficient and faith-

ful derivation of those cell types in the laboratory, whether for

basic science or therapeutic purposes. Second, it would support

the systematic ‘‘placement’’ of in vitro systems (e.g., stembryos,

organoids) in relation to wild-type development. Third, it would

facilitate characterization of the statistical properties of inter-

and intra-individual phenotypic variation, whether disease-

related or not. For diseases in which developmental processes

are directly (e.g., cleft lip) or indirectly (e.g., fewer nephrons /

hypertension) involved, the moment of causality may trace

back to statistical deviations from the normal distribution of

particular branch segments, e.g., too few progenitors of a given

type, or arrested development. Such insights could provide a

whole new understanding of how disease phenotypes arise,

including Mendelian disorders as well as endophenotypes that

shape common human disease risk. Fourth, it would facilitate

trees, branches and cell types to be aligned across species,
e.g., to understand the origins of cell types, evolutionary innova-

tions, etc., in a systematic manner.

Omnis cellula e cellula
Since around 2015, single-cell technologies that measure

diverse analytes in individual cells have blossomed. Computa-

tional efforts have been focused on clustering cells in each indi-

vidual dataset by their similarity in one dimension (e.g., mRNA), in

order to partition the data into digestible subsets (cell types) for

further analysis. More recently, this has been expanded to align-

ing datasets generated by different methods or labs as well as

integrating additional molecular phenotypes. This standard

workflow, although essential to our learning curve, presents a

challenge when it comes to cell type definitions and annotations.

The biggest issue, in our view, is that the resulting corpus is

heavily biased toward the systems in which the data is being

generated, rather than being anchored in a ‘‘real world’’ distribu-

tion. As a field, we need to move from simply performing dimen-

sionality reduction of our burgeoning data in isolation, and rather

toward building a shared understanding of the underlying reality

of multicellular biological systems. We argue that wild-type

development, a reproducible process that subsumes a large

part of the diversity and dynamics that we are interested in, pro-

vides an excellent scaffold for this goal.

Given the speed and breadth of innovation in this space, we

believe a future where we can rival the precision of C. elegans

cell type descriptors is attainable in more complex organisms.

The human reference genome revolutionized biology in the

2000s by providing both a centralized coordinate system for re-

porting and comparing results across studies and a basis for un-

derstanding the regulatorymechanisms underlying gene expres-

sion. In its current state, the reference genome is a linear

composite of merged haplotypes from less than two dozen peo-

ple. It contained gaps, biases, and errors and did not accurately

reflect global humangenomic variation, leading tocalls for amore

sophisticated and complete human pangenome with a graph-

based representation of genomic diversity.57 Yet despite these

shortcomings, that first draft has been invaluable for the acceler-

ation of biological discoveries. We believe that in analogy to the

human reference genome, a consensus ontogeny of cell types,

both for key model organisms as well as for the human species,

will provide an essential shared framework for our study of cell

fate specification in development and disease (Figure 5). As it be-

comesmore sophisticated,wecanderive related learnings about

theorigins of natural anddisease-relatedphenotypic variation, as

well as start to understand the building blocks and fundamental

regulatory logic of how cell types and states come to be.

Like Linnaeus, who did not know about evolutionary relation-

ships when he proposed his species classification system yet

was faced with information overload and a need to install an

infrastructure in order to accumulate, process, and retrieve the

bits of factual information,4 we need to start somewhere and

fill in and structure the pages we already have while leaving

room for large amounts of missing data. Although this step

may seem daunting given how much we don’t know at this

moment, it is useful to keep in mind how well we have been

served by Linnaean taxonomy, even if new species are still in

the process of being discovered and named to this day. A unified
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Figure 5. Graph-based references enable

representation of intra- and inter-individual

differences in both genotype and phenotype
Left: The human pan-genome aims to provide a
more accurate and diverse representation of
global genomic variation, including in repetitive
regions of the genome, and to improve gene-dis-
ease association studies across populations.57

Starting with a conventional reference genome,
variants are added as additional branches which
depart from the reference sequence but later rejoin
it. Each branch can be associated with an allele
frequency and the graph structure can be updated
as new haplotypes are discovered.
Right: In analogy, a consensus ontogeny would
enable comprehensive representation of intra- and
inter-individual variation in the context of health
and disease and would also allow accurate map-
ping of in vitro stembryo and organoid lineages.
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reference tree would be a stable scaffold to which additional in-

formation, both about health and disease states, could be

accrued over the decades.

There are undoubtedly logistical challenges associated with

the creation of a consensus ontogeny and universal nomencla-

ture, e.g., which species, who will build it, who will decide on

the nomenclature, who will maintain it, etc. However, we don’t

think the challenges are insurmountable. Single-cell data is

already being widely shared in an open-source manner by the

community, and tools are being developed for optimal integra-

tion of all available datasets of given systems,58 so there is no

reason to believe that it will be different once we start accommo-

dating lineage information. Though there is currently no specific

consortium or expert panel in place that is focusing on this ques-

tion, we believe it is highly worthy of pursuing an endpoint that

would ensure that we have a precise language to communicate

about biology. Initial drafts will be incomplete but can be up-

dated as data quality improves. This is exactly the strength of

the lineage-based approach, in that the overall coarse tree struc-

ture will be stable over time, even as resolution increases and

additional molecular phenotypes are added. C57BL/6 mice

did, do, and will develop the same way in 1983, 2023 and 2063.

Although in our view a consensus ontogeny is the end goal,

this does not mean that developmental atlases based on purely

molecular measurements and trajectories, which are attainable

in the present, aren’t useful or worthy of constructing.59,60

Since such methodologies and large datasets are already avail-

able whereas further refinement of lineage-tracing technology

is required for constructing dense cell type trees, we instead

advocate for using the molecular information we have at hand

in the present. At the same time, however, we should start a
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concerted effort to construct data-

driven, consensus ontogenies of cell

types that span the development of

vertebrate model organisms, however

coarse and incomplete they may be

initially.22,23, 24,61

In TheOrder of Things, Foucault laid out

the case that each historical era brings

with it a different conception of what it is
to know and this, in turn, is grounded in each epoch’s experience

of order.1 These unifying sets of rules for forming knowledge are

epistemes that ‘‘define the conditions of possibility of all knowl-

edge, whether expressed in a theory or silently invested in a

practice.’’ Order in the Renaissance episteme was based on

subjective resemblance, exemplified by the Aristotelian taxon-

omy (e.g., animals that live on water vs. animals that live on

land). This was followed by the episteme of the Classical era,

where phenomena were broken down into their constituent ele-

ments and systematically differentiated from others, focusing on

classifications of external features as exemplified by Linneaen

taxonomy, with the world a place of differences rather than sim-

ilarities. In contrast, the Modern episteme relies on history, not

order, and relates ‘‘discontinuous but analogous elements in

such a way that they are then able to establish causal relations

and structural constants between them’’. The basic shift here

is moving from organizing things in a table according to identity

and differences (Classical) to relating them to one another ac-

cording to functional analogies and temporal succession (Mod-

ern). In a sense, this is what shifting the goal from a periodic table

to a consensus ontogeny would achieve, by not only naming and

ordering cells based on differences along a visible axis (molecu-

lar state) but also by relating those to their invisible relationships

across time (lineage).
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